Welcome to my blog :)

rss

viernes, 14 de mayo de 2010

DESCRIBIR EL MODELO OSI

Modelo OSI

El modelo OSI surge como una búsqueda de solución al problema de incompatibilidad de las redes de los años 60. Fue desarrollado por la ISO (International Organization for Standardization) en 1977 y adoptado por UIT-T.
Consiste de una serie de niveles que contienen las normas funcionales que cada nodo debe seguir en la Red para el intercambio de información y la ínter- operabilidad de los sistemas independientemente de suplidores o sistemas. Cada nivel del OSI es un modulo independiente que provee un servicio para el nivel superior dentro de la Arquitectura o modelo.
El Modelo OSI se compone de los siete niveles o capas correspondientes:

Nivel Físico
Es el nivel o capa encargada del control del transporte físico de la información entre dos puntos. Define características funcionales, eléctricas y mecánicas tales como:
• Establecer, mantener y liberar las conexiones punto a punto y multipunto.
• Tipo de transmisión asincrónica o sincronía
• Modo de operación simplex, half-duplex, full dúplex.
• Velocidad de transmisión.
• Niveles de voltaje.
• Distribución de pines en el conector y sus dimensiones.
En este nivel se definen las interfaces, módem, equipos terminales de línea, etc. También son representativas de este nivel las recomendaciones del UIT-T, serie V para módem, interfaz V.24 no su equivalente RS-232C, las interfaces de alta velocidad V.35 o RS 449, las interfaces para redes de datos X.21 o las recomendaciones I.431 para RDSI.

Nivel de Enlace
Define la técnica o procedimiento de transmisión de la información a nivel de bloques de bits, o sea, la forma como establecer, mantener y liberar un enlace de datos ( en el caso del nivel 1 se refiere al circuito de datos), provee control del flujo de datos, crea y reconoce las delimitaciones de Trama.
Son representativos de este nivel los procedimientos o protocolos:
• BSC (Binary Synchronous Communication)
• HDLC (High Level Data Link Control)
• SDLC (Synchronous Data Link Control)
• DDCMP (Digital Data Communication Message Protocol)
La función mas importante de esta capa es la referida al control de errores en la transmisión entre dos puntos, proporcionando una transmisión libre de error sobre el medio físico lo que permite al nivel próximo mas alto asumir una transmisión virtualmente libre de errores sobre el enlace. Esta función esta dividida en dos tareas: detección y corrección de errores, entre la cual destaca la detección de errores por el método de chequeo de redundancia cíclica (CRC) y el método de corrección por retransmisión.

Nivel de Red
Destinado a definir el enrutamiento de datos en la red, así como la secuencial correcta de los mensajes. En este nivel se define la vía mas adecuada dentro de la red para establecer una comunicación ya que interviene en el enrutamiento y la congestión de las diferentes rutas.
Función importante de este nivel o capa es la normalización del sistema de señalización y sistema de numeraciones de terminales, elementos básicos en una red conmutada. En caso necesario provee funciones de contabilidad para fines de información de cobro.
Traduce direcciones lógicas o nombres en direcciones físicas. En un enlace punto a punto el nivel 3 es una función nula, o sea existe pero transfiere todos los servicios del nivel 2 al 4.
En el nivel 3 es representativa la recomendación X.25 del CCITT, que define el protocolo de intercambio de mensajes en el modo paquete.

Nivel de Transporte
En este nivel o capa se manejan los parámetros que definen la comunicación de extremo a extremo en la red:
• Asegura que los datos sean transmitidos libre de errores, en secuencia, y sin duplicación o perdida.
• Provee una transmisión segura de los mensajes entre Host y Host a través de la red de la misma forma que el Nivel de Enlace la asegura entre nodos adyacentes.
• Provee control de flujo extremo a extremo y manejo a extremo.
• Segmenta los mensajes en pequeños paquetes para transmitirlos y los reensambla en el host destino.

Nivel de Sesión
Es la encargada de la organización y sincronización del dialogo entre terminales. Aquí se decide por ejemplo, cual estación debe enviar comandos de inicio de la comunicación, o quien debe reiniciar si la comunicación se ha interrumpido. En general control la conexión lógica (no física ni de enlace).
Es importante en este nivel la sincronización y resincronizacion de tal manera que el estado asumido en la sesión de comunicación sea coherente en ambas estaciones. También, se encarga de la traducción entre nombres y base de datos de direcciones.

Nivel de Presentación
Este nivel o capa es el encargado de la representación y manipulación de estructuras de datos. Establece la sintaxis (o forma) en que los datos son intercambiados. Representativos de este nivel son el terminal virtual (VM: Virtual Machine), formateo de datos , compresión de información, encriptamiento, etc.

Nivel de Aplicación
En este nivel el usuario ejecuta sus aplicaciones. Ejemplo de este nivel son las bases de datos distribuidas en lo referente a su soporte.
Se distinguen dos categorías: servicios que usan el modo conexión para operar en tiempo real y aquellos que usan modos de conexión retardados (no en tiempo real).
Algunas aplicaciones de este nivel son:
• Correo electrónico según recomendación X.400 de CCITT.
• Servicios interactivos, tales como transacciones bancarias, interrogación de bases de datos, procesamiento en tiempo compartido.
• Servicio teletex, en particular la transferencia de documentos según recomendación T60, T61 y T62 de CCITT.

DESCRIBIR LAS ARQUITECTURAS DE RED

ARCNET

La Red de computacion de recursos conectadas (ARCNET, Attached Resource Computing Network) es un sistema de red banda base, con paso de testigo (token) que ofrece topologias flexibles en estrella y bus a un precio bajo. Las velocidades de transmision son de 2.5 Mbits/seg. ARCNET usa un protocolo de paso de testigo en una topologia de red en bus con testigo, pero ARCNET en si misma no es una norma IEEE. En 1977, Datapoint desarrollo ARCNET y autorizo a otras compañias. En 1981, Standard Microsystems Corporation (SMC) desarrollo el primer controlador LAN en un solo chip basado en el protocolo de paso de testigo de ARCNET. En 1986 se introdujo una nueva tecnologia de configuracion de chip.

ARCNET tiene un bajo rendimiento, soporta longitudes de cables de hasta 2000 pies cuando se usan concentradores activos. Es adecuada para entrornos de oficina que usan aplicaciones basadas en texto y donde los usuarios no acceden frecuentemente al servidor de archivos. Las versiones mas nuevas de ARCNET soportan cable de fibra optica y de par-trenzado. Debido a que su esquema de cableado flexible permite de conexión largas y como se pueden tener configuraciones en estrella en la misma red de area local (LAN Local Area Network). ARCNET es una buena eleccion cuando la velocidad no es un factor determinante pero el precio si. Ademas, el cable es del mismo tipo del que se utiliza para la conexión de determinales IBM 3270 a computadoras centrales de IBM y puede que va este colocado en algunos edificios.

ARCNET proporciona una red rebusta que no es tan susceptible a fallos como Ethernet de cable coaxial si el cable se suelta o se desconecta. Esto se debe particularmente a su topologia y a su baja velocidad de transferencia. Si el cable que une una estacion de trabajo a un concentrador se desconecta o corta, solo dicha estacion de trabajo se va a abajo, no la red entera. El protocolo de paso de testigo requiere que cada transaccion sea reconocida, de modo no hay cambios virtuales de errores, aunque el rendimiento es mucho mas bajo que en otros esquemas de conexión de red.

ETHERNET

· Desarrollado por la compañía XERTOX y adoptado por la DEC (Digital Equipment Corporation), y la Intel, Ethernet fue uno de los primero estándares de bajo nivel. Actualmente es el estándar mas ampliamente usado.

· Ethernet esta principalmente orientado para automatización de oficinas, procesamiento de datos distribuido, y acceso de terminal que requieran de una conexión económica a un medio de comunicación local transportando trafico a altas velocidades

· Este protocolo esta basado sobre una topología bus de cable coaxial, usando CSMA/CD para acceso al medio y transmisión en banda base a 10 MBPS. Además de cable coaxial soporta pares trenzados. También es posible usar Fibra Optica haciendo uso de los adaptadores correspondientes.

· Además de especificar el tipo de datos que pueden incluirse en un paquete y el tipo de cable que se puede usar para enviar esta información, el comité especifico también la máxima longitud de un solo cable (500 metros) y las normas en que podrían usarse repetidores para reforzar la señal en toda la red.


TOKEN RING

  • Las redes basadas en (token passing) basan el control de acceso al medio en la posesión de un token (paquete con un contenido especial que le permite transmitir a la estación que lo tiene). Cuando ninguna estación necesita transmitir, el token va circulando por la red de una a otra estación. Cuando una estación transmite una determinada cantidad de información debe pasar el token a la siguiente. Cada estación puede mantener el token por un periodo limitado de tiempo.
  • Las redes de tipo token ring tienen una topología en anillo y están definidas en la especificación IEEE 802.5 para la velocidad de transmisión de 4 Mbits/s. Existen redes token ring de 16 Mbits/s, pero no están definidas en ninguna especificación de IEEE.
  • Los grupos locales de dispositivos en una red Token Ring se conectan a través de una unidad de interfaz llamada MAU. La MAU contiene un pequeño transformador de aislamiento para cada dispositivo conectado, el cual brinda protección similar a la de Local Talk. El estándar IEEE 802.5 para las redes Token Ring no contiene ninguna referencia específica a los requisitos de aislamiento. Por lo tanto la susceptibilidad de las redes Token Ring a las interferencias puede variar significativamente entre diferentes fabricantes.

Prioridades

· · Las redes Token Ring utilizan un sofisticado sistema de prioridad que permite designarles a los usuarios un tipo de prioridad en base a su uso de la red. Los frames en redes Token Ring tienen dos campos que controlan la prioridad: el campo de prioridad y un campo reservado.

  • Solo las estaciones que posean un valor de prioridad igual o mayor al contenido en el token pueden seccionar éste.
  • Una vez que el token está seccionado y la información del frame cambiada, sólo las estaciones con una prioridad mayor a la que transmitió el token puede reservar el token para la siguiente pasada a través de la red.
  • Cuando el siguiente token es generado, este incluye la prioridad más grande anteriormente reservada por la estación.
Después de que se efectuó su entrega la estación que mandó debe regresar la prioridad del token a como lo había encontrado.


VALORAR EL AMBIENTE FÍSICO

INSTALACIÓN ELÉCTRICA

La acometida o (instalación eléctrica) es la parte de la instalación de enlace que une la red de distribución de la empresa eléctrica con la caja general de protección del particular. Es propiedad de la empresa eléctrica y suele haber una por cada edificio. La acometida normal de una vivienda es monofásica, de dos hilos, uno activo (fase) y el otro neutro, a 230 voltios, dependiendo del país. En el caso de un edificio de varias viviendas la acometida normal será trifásica, de cuatro hilos, tres activos o fases y uno neutro, siendo en este caso la tensión entre las fases 400 V y de 230 V entre fase y neutro.Las acometidas pueden ser subterráneas o aéreas, dependiendo del tipo de distribución de la zona:

• Subterránea, para zonas urbanas.

• Aéreas, para las líneas de alta tensión

CONDUCTORES

Se llaman conductores eléctricos a los materiales que puestos en contacto con un cuerpo cargado de electricidad transmite ésta a todos los puntos de su superficie. Los mejores conductores eléctricos son los metales y sus aleaciones. Existen otros materiales, no metálicos, que también poseen la propiedad de conducir la electricidad como son el grafito, las soluciones salinas ( el agua de mar) y cualquier material en estado de plasma. Para el transporte de la energía eléctrica, así como para cualquier instalación de uso doméstico o industrial, el metal empleado universalmente es el cobre en forma de cables de uno o varios hilos. Alternativamente se emplea el aluminio, metal que si bien tiene una conductividad eléctrica del orden del 60% de la del cobre es, sin embargo, un material mucho más ligero, lo que favorece su empleo en líneas de transmisión de energía eléctrica en las redes de alta tensión. Para aplicaciones especiales se utiliza como conductor el oro.

PARTES QUE CONPONEN UN CONDUCTOR

. El alma o elemento conductor.. El aislamiento.. Las cubiertas protectoras- El alma o elemento conductor: Se fabrica en cobre y su objetivo es servir de camino a la energía eléctrica desde las centrales generadoras a loscentros de distribución (subestaciones, redes y empalmes), para alimentar a los diferentes centros de consumo (industriales,grupos habitacionales, etc.).

Alambre:

Conductor eléctrico cuya alma conductora está formada por un solo elemento o hilo conductor.

Cable:

Conductor eléctrico cuya alma conductora está formada por una serie de hilos conductores o alambres debaja sección, lo que le otorga una gran flexibilidad.

Monoconductor:

Conductor eléctrico con una sola alma conductora, con aislación y con o sin cubierta protectora.

Multiconductor:

Conductor de dos o más almas conductoras aisladas entre sí, envueltas cada una por su respectiva capa de aislante y con una o más cubiertas protectoras comunes.

Conductor TW:

Los conductores de aluminio tipo TW son utilizados para circuitos de fuerza y alumbrado en edificaciones industriales, comerciales y residenciales, tal como se especifica en el National Electrical Code.


CONTROL DE CONDICIONES AMBIENTALES

Factores como temperatura, ruido, vibración e iluminación son aspectos que se deben de tomar en cuanta al momento de diseñar espacios adecuados para el diseño de una red entre los factores ambientales que se pueden prever podemos encontrar los siguientes:

Estructura de lugar

Í Alta tensión

Í Suela

Í Zona geográfica

Í Humedad

Í Temperatura ambiental

Í Polvo

Í Ruido

Í Interferencias

Í Distorsión

Í Ecos

Í Factor a medio de comunicación

Í Existencia de equipos de comunicación


FACTORES QUE SE DEBEN DE TOMAR EN CUENTA.

  • Espacios adecuados para los equipos de aire acondicionado
  • Espacios adecuados para los suministros de energía
  • Colocar la red lejos de áreas que contengan materiales peligrosos
  • Colocar la red lejos del ruido.


Control ambiental

En cuartos que no tienen equipo electrónico la temperatura del cuarto de telecomunicaciones debe mantenerse continuamente (24 horas al día, 365 días al año) entre 10 y 35 grados centígrados. La humedad relativa debe mantenerse menor a 85%. Debe de haber un cambio de aire por hora. En cuartos que tienen equipo electrónico la temperatura del cuarto de telecomunicaciones debe mantenerse continuamente (24 horas al día, 365 días al año) entre 18 y 24 grados centígrados. La humedad relativa debe mantenerse entre 30% y 55%. Debe de haber un cambio de aire por hora. Se debe evitar el uso de cielos falsos en los cuartos de telecomunicaciones. Las condiciones ambientales es un tema que se tiene que tomar mucho en cuenta, ya que de estos factores depende el buen funcionamiento de la red. Por medio de los factores se crean las medidas de seguridad de la red. En particular los ruidos son un gran problema en las comunicaciones de datos porque son causa de error de transmisión.


NORMAS DE SEGURIDAD E HIGIENE

  1. Seguridad eléctrica. Revise bien las conexiones eléctricas y asegúrese que no estén enredados y no estén al nivel del piso. Así se evita que en caso existir algún liquido a nivel del piso, no llegue a afectar las conexiones eléctricas y malograr el equipo.

    2. No permita que se coma ni tome líquidos cerca de la PC. No hay nada mas desagradable que tener que limpiar teclados llenos de café o migas de pan. Estos afectan el funcionamiento.

    3. Seguridad Informática. Si tienes información sensible, ponle contraseña a tu PC. No dejes escrito en ningún lugar visible tu contraseña. Si necesitas escribirlo, hazlo en una libreta de notas que siempre lleves contigo.

    4. Instala antivirus, firewalls, anti-spam. para evitar que ocurran ataques a tu información.

    5. Si tienes información critica, comprímelos con winzip o winrar, y ponles contraseña (diferente a la de tu login).
SISTEMA DE CABLEADO ESTRUCTURADO

Es el sistema colectivo de cables, canalizaciones, conectores, etiquetas, espacios y demás dispositivos que deben ser instalados para establecer una infraestructura de telecomunicaciones genérica en un edificio o campus. Las características e instalación de estos elementos se debe hacer en cumplimiento de estándares para que califiquen como cableado estructurado. El apego de las instalaciones de cableado estructurado a estándares trae consigo los beneficios de independencia de proveedor y protocolo (infraestructura genérica), flexibilidad de instalación, capacidad de crecimiento y facilidad de administración.

El cableado estructurado consiste en el tendido de cables en el interior de un edificio con el propósito de implantar una red de área local. Suele tratarse de cable de par trenzado de cobre, para redes de tipo IEEE 802.3. No obstante, también puede tratarse de fibra óptica o cable coaxial.

El tendido de cierta complejidad cuando se trata de cubrir áreas extensas tales como un edificio de varias plantas. En este sentido hay que tener en cuenta las limitaciones de diseño que impone la tecnología de red de área local que se desea implantar:

  • La segmentación del tráfico de red.
  • La longitud máxima de cada segmento de red.
  • La presencia de interferencias electromagnéticas.
  • La necesidad de redes locales virtuales.
  • Etc.